
148 

Acta Cryst. (1993). D49, 148-157 

Improvement of Macromolecular Electron-Density Maps by the Simultaneous 
Application of Real and Reciprocal Space Constraints 

BY KEVIN D. COWTAN AND PETER MAIN 

Department of  Physics, University o f  York, York YO1 5DD, England 

(Received 17 May 1992; accepted 29 June 1992) 

Abstract 

A general scheme for the improvement of electron- 
density maps is described which combines informa- 
tion from real and reciprocal space. The use of 
Sayre's equation, solvent flattening and histogram 
matching within this scheme has been described pre- 
viously [Main (1990). Acta Cryst. A46, 372-377]. 
Non-crystallographic symmetry averaging, the use of 
a partial structure and constraints on individual 
structure factors have now been added. A computer 
program, SQUASH, is described which applies all 
these constraints simultaneously. Its application to 
the maps of several structures has been successful, 
particularly so when non-crystallographic symmetry 
is present. Uninterpretable maps have been improved 
to the point where a significant amount of the struc- 
ture can be recognized. Applying the constraints 
simultaneously is more powerful than applying them 
all in series. 

I. Introduction 

Main (1990) has demonstrated how Sayre's equation 
(Sayre, 1952) and density-modification techniques 
may be combined in an effective and computation- 
ally efficient process for the phase refinement of 
protein structures. The solution of large non-linear 
systems such as Sayre's equation has previously pre- 
sented computational problems. However, the use of 
the conjugate-gradient method to calculate shifts to 
the electron-density map and the use of fast Fourier 
transforms in performing convolution operations has 
rendered this calculation practical on many modern 
workstations. Zhang & Main (1990b) demonstrated 
the application of the procedure, known as 
SQUASH, to a small protein structure. 

This paper describes recent progress with 
SQUASH. Equations are given for the constraint of 
individual structure factors in Sayre's equation and 
we describe additional density-modification tech- 
niques. Information from non-crystallographic sym- 
metry and partial structures has now been combined 
with the original techniques of solvent flattening and 
density-histogram matching. Results are given for 
the application of SQUASH to a variety of known 
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and unknown structures and we give a summary of 
our experiences in the use of the program. 

2. Constraining the electron density 

Let us consider a general method by which con- 
straints in both real and reciprocal space can be 
combined to produce an estimate of the electron 
density. Typical real space constraints might include 
regions of known structure, or the results of density- 
modifiction calculations. Reciprocal space con- 
straints include the measured structure-factor 
magnitudes and any known phase indications. 
Sayre's equation can be considered equally as a 
constraint in real or reciprocal space. 

Each constraint is described in terms of a residual 
in real space which becomes zero when the constraint 
is satisfied. It may be written as 

:~ (x) = 0 (1) 

where :r~ is a function of the electron density p(y) 
and x is the vector of parameters describing the 
constraint. Thus, we can form the residuals 

r(x) = ~,~ (x) (2) 

where the magnitude of the vector r is zero when p(y) 
satisfies the constraint. 

To find the value of the electron-density function 
p, we use the Newton-Raphson method, i.e. perform 
the iteration 

Pnew = Pond + Zip (3) 
where Ap is given by the equation 

,lAp = - r (4) 

and J is the Jacobian of the residual system 

J(x,y) = Or(x)/Op(y). (5) 

The several constraints should be combined in 
such a way that the resulting electron-density func- 
tion is most consistent with all of them. As the 
system of equations is overdetermined, this is 
obtained as the least-squares solution, which mini- 
mizes the combined residual of all the constraints. 
For M systems of equations, whose residuals and 
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Jacobians are ri(x) and Ji(x,y) respectively ( i -  
1...M), the normal equations of least squares take the 
form 

M M 

Z J[JiAP = - ~', J[ri. (6) 
i = 1  i = 1  

This is a linear system of N equations in N 
unknowns, where N is the number of grid points in 
the map. This system is solved for Ap by the 
conjugate-gradient method, as described by Main 
(1990) [see also Sayre (1974)], which has the advan- 
tage that we neither need store the the large Jacobian 
J nor calculate the matrix jTj .  

2.1 Constraint systems 

We consider three types of constraint which can be 
applied to the electron density and their representa- 
tion as real space residuals. 

2.1.1. Sayre's equation. Sayre's equation is 
normally expressed in its reciprocal space form as 

F(h) = [O(h)/V]~]F(k)F(h - k) (7) 
k 

where O(h)=f(h)/g(h) and f ( h ) i s  the common 
atomic scattering factor, g(h) the scattering factor of 
the squared atom. The real space residual is 

r0(x) = (V/N)ZpZ(y)~(x - y) - p(x) (8) 
Y 

where ~O(x) is the Fourier transform of 0(h). The 
equation may be interpreted as constraining the 
electron-density peaks to be the particular shape 
related to ~0(x). It is applied here in the way 
described previously by Main (1990) and Zhang & 
Main (1990b). 

2.1.2. Density constraints. There are several 
features of an electron-density map which may be 
known before the structure determination is com- 
plete and can be employed through the process of 
density modification. The techniques considered here 
are: solvent flattening, density-histogram matching, 
non-crystallographic symmetry averaging and partial 
structure information. Further comments on these 
techniques are given in the next section. 

The combined techniques take an initial electron- 
density map and construct an improved map directly 
from it, as expressed by the equation 

p(x) = H(x) (9) 

where H(x) is the modified density. 
We may want to apply different weights, or con- 

fidence values, to electron-density points. This allows 
the different density-modification techniques, which 
affect different areas of the map, to be weighted 
differently. Expressing the system of weights as 
wl(x), the residual equations are 

r,(x) = Wl(X)[H(x) -- p(x)]. (10) 

2.1.3. Structure-factor constraints. We may wish to 
constrain the density to maintain consistency with 
the observed data. This is achieved by using structure 
factors which are known in both magnitude and 
phase, e.g. those specially well determined by multi- 
ple isomorphous replacement (MIR), and expressed 
in the equations 

F(h) = Fobs(h) (I I) 

where phases are included. Note that the F(h) are 
variables and the Fobs(h) are constants. 

Applying weights w2(h) to individual structure fac- 
tors, the reciprocal space residual takes the form 

Rz(h) = w2(h)[F(h)- Fobs(h)]. (12) 

The real space residual is the Fourier transform of 
this function where it takes the form of a con- 
volution. Differentiation of the real space residual 
then gives the Jacobian for this system of equations. 

This system has been applied successfully to con- 
strain structure factors which have not yet been 
introduced into the calculation to zero. Unfortu- 
nately, attempts to constrain some structure factors 
to their MIR magnitude and phase, or by using a 
modified constraint equation to constrain structure 
factors in magnitude only, reduced the effectiveness 
of the phasing process. This unexpected result was 
found to be a consequence of the phase recombi- 
nation (§4.5) in which figures of merit are calculated 
from the agreement between observed and calculated 
structure amplitudes. Constraining the magnitudes 
invalidates the figure-of-merit calculation. 

2.2. Apply&g the constraints 

The Jacobian for each constraint is calculated by 
differentiating the real space residual according to 
(5). The product of the Jacobian and its transpose 
with an arbitrary vector can then be formed. In each 
case, it simplifies to a series of convolutions which 
can be performed by fast Fourier transforms. The 
required expression for each constraint is listed in 
Table 1. 

3. Density modification 

As already described in §2.1.2, we calculate a 
modified map using whatever density information is 
available and constrain the electron density to equal 
the modified map. 

The application of solvent flattening and histo- 
gram matching has been described by Zhang & Main 
(1990a) and the combination with Sayre's equation 
by Zhang & Main (1990b). Application of these 
techniques in the current work has not changed. 

The new density-modification techniques in 
SQUASH are non-crystallographic symmetry aver- 
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Table 1. Formulae for solving the compound system 

Constraint  j r jp  j r r 
Sayre's equation 2p(x~ / [0( - h)P'(h)] - .  / [P'(h)] 2p(x)~/- [0( - h)R'(h)] - . / [ R ' ( h ) ]  

where P'(h) = 20(h)./ ~[p(x)p(x)] where R'(h) = 0(h). / -'[p2(x)] 
- F ( h )  

Density w~j(x)p(x) w~(x)Lo(x) - H(x)] 
modification 

Magnitude and ./[P(h)w2(h)w2( - h)] . / {[/fib) - F,,b,(h)] 
phase where P(x) =. )'~ " J[p(x)] × w2(h)w~( - h)} 

. / =  ( i /V)Y~,exp(-2zrih.x/N) (discrete Fourier  transform), . / -  J - (V/  

N)~,exp(2~-ih.x/N) (discrete inverse Fourier  transform), p is an arbitrary 
vector, r is the residual vector for the particular constraint. 

aging and the inclusion of partial structure 
information. 

3.1. Non-crystallographic symmetry 

Methods for the determination of the non-crystal- 
lographic symmetry elements are well established 
and it will be assumed here that the symmetry 
elements are known. 

It is also necessary to determine an envelope 
describing which parts of the unit cell will be aver- 
aged together. For the tests described here, an 
approximation to the envelope was determined as 
follows. The geometrical centre of the non-crystallo- 
graphic symmetry-related molecules was calculated 
from what was known about the structure and a 
Voronoi polyhedron constructed about it. This con- 
tained the region of the unit cell closer to the point 
than to any of its space-group symmetry equivalents. 
The envelope was then obtained from the overlap 
between this polyhedron and the protein mask 
determined by the method of Wang (1985). 

The averaging calculation follows that of Bricogne 
(1974), except in the interpolation between grid 
points required in the transformation of the map by 
a non-crystallographic symmetry operator. It is usual 
to calculate an initial map at two or three times the 
data resolution and use linear interpolation to obtain 
density values from this map. In this work, it was 
convenient to calculate the map at the normal resolu- 
tion in order to fit in with the other operations in 
SQUASH. Adequate results could be obtained using 
a map calculated at the resolution of the data and a 
quadratic interpolating function chosen to approxi- 
mate the Fourier transform of the resolution sphere 
around the origin in real space. This interpolating 
function, like that of Bricogne, is convoluted with 
the map to give an estimate of the electron density at 
a non-grid location. 

This method of interpolation was tested by com- 
paring initial and transformed maps for a symmetri- 
cal density distribution. There is some loss of 
resolution in the interpolation process; however, the 
correlation coefficient between the intial and trans- 
formed maps was found to be greater than 0.96 over 

a wide range of tests. The transformed map may be 
rescaled to keep its variance the same as that of the 
initial map. 

Averaging is performed between the initial and 
transformed maps within the chosen envelope and 
the unit cell reconstructed from the averaged sub- 
unit. The non-crystallographic symmetry averaging 
calculation can be applied either on its own or 
together with histogram matching and solvent flat- 
tening. In the latter case, it is best to apply the 
symmetry averaging first, as the loss of resolution in 
the interpolation process tends to corrupt the 
electron-density histogram. 

3.2. Partial structure 

It is common at some stage of the structure deter- 
mination to have an atomic model of parts of the 
molecule. Such partial structure information is 
usually combined with experimental data in recipro- 
cal space, using the method of Read (1986) or simi- 
lar. This method takes into acount the effect of 
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Fig. I. Flowchart for phase refinement by Sayre's equation and 
density modification. 
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errors in the data upon each reflection and is 
superior to density-modification methods for normal 
use. However, if we are already applying density 
modification, it is useful to include the partial struc- 
ture in the density-modification process as well. 

This is achieved by calculating an electron-density 
map from the model coordinates and then averaging 
this with the estimated density in the regions where 
the model is available. To avoid biasing the map, the 
coordinate errors in the model, estimated by the 
method of Read, must be taken into account. 

The effect of errors in the atomic coordinates can 
be simulated by convoluting the atomic density with 
a Gaussian function. This is equivalent to multi- 
plying the partial structure factors by a temperature 
factor in reciprocal space. The effective temperature 
factor which must be applied (Blundell & Johnson, 
1976) is given by 

Ben~ = 8'H'2u 2 (13) 

where u 2 is the mean-square error in atomic position. 
In addition, if the mean coordinate error is non-zero, 
it is necessary to take a weighted average of the 
initial and model densities 

P m o d  -" (1 - Wpar)Pinitial + WparPpa  r.  (14) 

The weighting function should be unity for no errors 
and zero for infinite errors. A satisfactory empirical 
function is 

Wpar = exp( -- Be~sin 20/A 2) (15) 

where the average is taken over all reflections. 

4. Practical considerations 

4.1. Program outline 

A program, based on that of Zhang (1989), was 
constructed to test Sayre's equation and the con- 
straint systems on protein structures. The program 
assumes that structure-factor magnitudes and phases 
with figures of merit are available at some starting 
resolution. It is possible either to refine phases at 
that resolution or to determine phases for magni- 
tudes at higher resolution if they are available. In 
addition, structure factors may be calculated in both 
magnitude and phase if they are missing from the 
original data. 

A flow chart of the calculation is given in Fig. 1. 
Note that the density modification is performed 
inside the Newton-Raphson loop. The density- 
modified map is recalculated after each Newton-  
Raphson iteration on the basis of the improved map 
obtained from the previous cycle. The right-hand 
side of the density-modification equations (9) there- 
fore changes between iterations, making this appar- 
ently linear system non-linear in a complicated and 
unpredictable manner. 

4.2. Scaling the input data 

It should be noted that in several places, electron 
density or stucture factors from different sources are 
compared and combined. It is therefore of vital 
importance, especially in the phase recombination 
(~4.5) that the input data be on an absolute scale. 
The Wilson plot (Wilson, 1949) was not sufficiently 
accurate for this purpose, so the following, more 
robust, method was used instead. 

The electron-density distribution and solvent level 
fix the mean and variance of the whole electron- 
density map. Thus we can scale the input data to be 
consistent with the target histogram using the fol- 
lowing relationships, obtained from the structure- 
factor equation and Parseval's theorem: 

-~= (1/V)F(O00) (16) 

2 (1/V2)~,IF(h)I2 (17) O'p 
h 

2 is the variance of the electron density about where o- o 
zero. 

The mean and variance of the electron-density 
map at the desired resolution is calculated using the 
target histogram, the mean value of the solvent 
density and the solvent content of the cell. F(000) can 
then be evaluated from (16) and the scale of the 
input magnitudes from (17). This method is adequate 
for scaling unknown data sets at any resolution. 

4.3. The 0 curve 

To apply Sayre's equation, we must first calculate 
the function O(h), where h = Ihl = 2sin0/a [equation 
(7)]. At infinite resolution, we expect 0 to be a 
spherically symmetric function which decreases 
smoothly with increasing sin0. However, for data at 
less than atomic resolution, the 0 curve will behave 
differently because atomic overlap changes the peak 
shapes. In practice, it is calculated empirically from 
Sayre's equation itself using the formula 

( F ( h )  ) (18) 
O(h)= V Y F ( k ) F ( h - k )  h 

where the average is carried out over ranges of [h I , 
i.e. over spherical shells each covering a narrow 
resolution range. 

For phase extension, a Gaussian function of Ih] is 
fitted to the available values of 0 and used as an 
estimate of 0 in the high-resolution region. The use 
of a weighted combination of the empirical and 
Gaussian curves, based on the number of reflections 
in the range, avoids problems when there are too few 
reflections to obtain a reliable average. 

0 curves produced by this method for insulin are 
shown in Fig. 2. They are plotted as a function of 
sin20/A 2 at the starting resolution of 3.0/k and after 
phase extension to 2.15/~, respectively. Note that the 
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final curve in the extension region closely matches 
the original extrapolated curve. Various formulae 
based on analytical approximations to the atomic 
shape have also been used to estimate O. However, 
the empirical method given here has been shown to 
be the most reliable over a range of structures. 

4.4. Phase extension 

It is normal in density-modification calculations to 
extend the resolution in small steps (Hendrickson & 
Lattman, 1970; Zhang, 1989), the resolution being 
increased slightly after each phase recombination. 
This is in contrast to small-molecule direct methods, 
where it is normal to phase the largest structure 
factors first as these have the greatest affect on the 
density map. Our own results were improved by 
introducing reflections on the basis of a weighted 
combination of both the reflection resolution and its 
magnitude. The weight function used is [ ( )  s 

w , . t , o  = IF(h)l 2 1 - 3 ~ + ~ s (19) 
\Smax / J 

where s = IhJ and Smax is the value o f  s at the resolu- 
t ion l imit. The term in square brackets is propor-  
t ional to the number of terms available in Sayre's 

1.000 -- 

' '  L . .  -I 

I. 
o . o o o  J 

I 
I 

0 . 0 0 0  I l tmlt o f  

o.ooo o. o11,o o. I oo o. 10O o.loo 
4(sin20)/.~ 2 (a) 

L S O 0  

I . O 0 0  

J 

0.800 i 

0.000 

I . . . .  I . . . .  I . . . .  l . . . .  1 " " 
o . o o o  0 . 0 8 0  o .  I O O  o .  I 8 o  0 . 8 0 0  

4(sin28)/~ 2 
(b) 

Fig. 2. (a) The empirical 8 curve calculated from Sayre's equation 
using 3.0 A MIR data. Extrapolation is achieved by fitting a 
Gaussian to the empirical curve. (b) The O curve calculated 
from Sayre's equation after phase extension to 2.15 A. 

equation for phasing that particular reflection. At 
each stage of the refinement, all the reflections with a 
weight above a certain threshold value are included. 
Those left out of the calculation are set to zero at the 
beginning of each cycle of phase extension. The 
threshold value is reduced between cycles of phase 
extension until all structure factors have been 
included. 

4.5. Phase recombination 

Once the electron density has been modified t o  
make it consistent with the available information, the 
map is transformed to give a new set of structure 
factors, modified in both magnitude and phase. 
These are then combined with the experimental data. 
It is normally assumed that the Fob s a r e  accurate and 
that the phases determined from experimental 
methods have a certain probability distribution 
about the estimated values. 

Figures of merit for the modified structure factors 
are estimated from the size of the observed and 
modified structure-factor magnitudes by the formula 

FOM = It(X)/lo(X) (20) 

where Io and I] are zero- and first-order modified 
Bessel functions and 

2trAJEobsJ]Emod[ 
X =  l _ o r  2 (21) 

where Eobs, Emod are normalized observed and 
modified structure factors and era is as measure of 
the accuracy of the modified map (Srinivasan, 1966). 
The parameter ~r,~ is estimated by the method of 
Read (1986). 

Once a figure of merit has been estimated for the 
modified phase, it can be combined with the MIR 
phase by the method of Hendrickson & Lattman 
(1970). Thus we arrive at a combined phase in which 
the information from the density-modification calcu- 
lation has been filtered by the agreement between the 
modified magnitudes and the MIR data. 

Read's method for estimating the parameter X is 
found to give better results than that of Sim (1959), 
provided there are sufficient reflections to give 
reliable statistics. 

4.6. Computational requirement 

Most of our calculations have been performed on 
Silicon Graphics MIPS-3000 based machines. The 
CPU time for a phase extension using Sayre's equa- 
tion and density modification from 3 to 2 • on a 
small protein like insulin is about 1 h. Much of this is 
in the calculation of fast Fourier transforms, so the 
time increases slightly faster than the unit-cell 
volume. 
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Structure 
Insulin 

RNase 

I L I O  

C H M I  

P-A 

Table 2. The test structures 

Full name Unit cell 
2Zn pig insulin a = 82.5, b = 82.5, c = 34.0 A 

a = 9 0 , ~ = 9 0 ,  y =  120' 

Space No. of Solvent 
group residues content ( % )  

R3 51 30 

MIR data Native data 
N C S *  r e s o l u t i o n  ( A )  resolution ( A )  

Twofold 3.0 2.1 
rotation 

Guanyloribonuclease from a = 64.9, b = 78.3, c = 38.8 A P2,2,2, 96 
Streptomyces aureofaciens a = 90, fl = 90, y = 90" 

3.0 2.5 

Recombinant Human a = 55.0, B = 55.0, c = 77.1 A P43 153 
interleukin 113 a = 90, /3  = 90, y = 9 0  

3.2 2.2 

5-Carboxymethyl-2-hydroxy- a = 90.4, b = 90.4, c = 130.1 A P4,2t2 125 
muconate isomerase a = 90 , /3  = 90, y = 9 0  

Threefold 3.7 2.1 
rotation 

Penicillin acylase a = 51.9, b = 64.6, c = 75.73 A PI  766 
or= 1 0 0 . 1 , / 3 =  111.4, y =  106 .1  

5 . ~ 3 . 5  2.5 

* Non-crystallographic symmetry. 

References 
Adams et al. (1969), 
Baker et al. (1988) 

~;ev~ik et al. (1981), 
~;ev~:ik & Zel inka  (1984) 

Oldfield et al. (1992), 
Finzel  et aL (1989) 

Wigley et al. (1992) 

Duggleby et al. (1992) 

The major limitation is the amount of memory 
required. The conjugate-gradient calculation requires 
at least six maps in memory at once and, in practice, 
it is useful to be able to hold more than this. For 
insulin, about 12 MB of real memory are required 
and this figure increases in proportion to the unit-cell 
volume. Fewer maps are required if diagonal 
approximation is used and this also reduces the 
computing time by a factor of about 5. A small 
further reduction of both time and memory is 
achieved if Sayre's equation and the reciprocal space 
constraint are excluded from the calculation. 

5. Results 

Details of  five structures to which we have applied 
SQUASH are given in Table 2. Two of the 
structures, insulin and RNase, were known when 
work was started on them. Interleukin 1/3 
and 5-carboxymethyl-2-hydroxymuconate isomerase 
became known while we were testing SQUASH on 
them and were useful in its development. The final 
structure, penicillin acylase, is currently being 
determined with the aid of SQUASH. 

To indicate the effectiveness of the different tech- 
niques described in this paper, they were applied in 
various combinations to the four known test struc- 
tures. The following measures of the quality of the 
results were calculated: 

(a) Unweighted mean phase error between 
SQUASH phases and those of the known structure. 

(b) The correlation coefficient between density 
maps obtained from SQUASH and from the known 
structure. The correlation coefficient is calculated 
from 

correlation = _ _  P I P 2  - - _ _ P l  P 2  (22) 

[tp  _  ;2)tp  _ 

where P l and p2 are the density maps to be com- 
pared. This comparison is performed both for a map 
using SQUASH phases only and for a weighted map 
using the figures of merit for the weights. This gives 
an indication of how good the figures of merit are. 

Table 3. Phase refinement results 

Correlatmn 
Data set ~0 ~o a n d  F O M  

Insulin 
MI R 46.9 - -  - -  0.401 0.555 
H M / S F  42.4 73.3 61.4 0.584 0.626 
S A Y R / H M / S F  40.9 68.2 57.7 0.639 0.671 
N C S  44.4 92.1 73.8 0.419 0.547 
H M / S F / N C S  38.6 70.2 58.1 0.640 0.681 
S A Y R / H M / S F ; N C S  38.4 67.7 56.5 0.658 0.697 

RNase 
M I R 59.7 . . . .  0.300 0.396 
H M / S F  55.8 80.3 65.9 0.429 0.470 
S A Y R / H M / S F  55.3 78.5 64.9 0.443 0.484 

I L I B  

M I R  67.5 - -  - -  0.179 0.210 
H M / S F  70.4 84.3 78.6 0.222 0.262 
S A Y R / H M / S F  70.5 86.5 80.0 0.195 0.244 

C H M I  

M I R  72.9 88.6 85.5 0.086 0.139 
H M / S F  70.3 85.8 82.1 0.145 0.184 
S A Y R / H M / S F  70.3 85.4 82.4 0.149 0.185 
NCS 70.3 88.7 85.0 0.107 0.150 
H M / S F / N C S  64.5 73.9 72.0 0.328 0.394 

Mean phase error ( ' )  

Initial Extended All 

CHMI partial structure data 
C O M  B 69.7 81.9 77.5 0.245 0.27 I 
C O M B  + H M / S F / P A R  68.6 80.5 76.2 0.265 0.293 

Abbreviations: MIR, initial phases input to S Q U A S H ;  C O M B ,  combined 
M I R  and partial structure phases; SAYR, Sayre's equation; SF, solvent 
flattening; HM, histogram matching; NCS, non-crystallographic symmetry 
averaging; PAR, partial structure. 

Comparisons between the estimated and calculated 
phases for the initial MIR data and for the 
SQUASH results are listed in Table 3. These are 
discussed in the following sections. 

5.1. Insulin 

The primitive cell of insulin contains six molecules, 
with pairs forming dimers related by a non-crystallo- 
graphic twofold axis and the dimers related by a 
crystallographic threefold axis. The structure was 
originally solved directly from a 3 A MIR map 
(Adams et al., 1969). 

Table 3 shows that histogram matching (HM) and 
solvent flattening (SF) together are effective both for 
phase refinement and phase extrapolation. Inclusion 
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of Sayre's equation (SAYR) leads to a further 
improvement. It is evident from the mean phase 
error of the extended phases that Sayre's equation is 
more powerful than density modification for phase 
extension at this resolution. 

In applying non-crystallographic symmetry (NCS), 
the phases were extrapolated in the same way as with 
other density-modification techniques. This is differ- 
ent from normal practice where the extension is 
usually carried out very slowly and carefully. Failure 
to do this results in the extrapolated phases contain- 
ing little useful information as can be seen from 
Table 3. However, the combination of non-crystallo- 
graphic symmetry averaging with histogram match- 
ing and solvent flattening leads to a great 
improvement in both initial and extrapolated phases. 
Histogram matching and solvent flattening are 
effective in counteracting the loss of resolution in the 
averaging calculation and in increasing the resolution 
of the map. The inclusion of Sayre's equation gives 
rise to a further improvement. 

5.2. RNase 

RNase is similar to insulin both in size of cell and 
quality of data. MIR phases are available to 2.5 A, 
which is also the limit of the observable data. The 
MIR phases and figures of merit were removed for 
all structure factors beyond 3 A resolution and then 
phase extension was performed to 2.5 A. 

The results in Table 3 show that the density 
modification made a significant improvement to the 
map. However, the phase extension is less satisfac- 
tory than for insulin. In particular, Sayre's equation 
was less effective. This is a result of the poorer 
quality of the starting map and the lower resolution 
of the final map. 

5.3. Interleukin l fl 

The experimental data of interleukin was phased 
to 3.2 A, with native magnitudes to 2.2 A resolution. 
The MIR map was uninterpretable. It was even very 
difficult to distinguish the solvent from the protein 
regions of the map. 

This was a much worse initial map than in pre- 
vious tests, but density modification still gives some 
improvement. The final map shows solvent and pro- 
tein regions fairly clearly and it contains some inter- 
pretable features. The addition of Sayre's equation 
gives poorer results because of the large volume of 
solvent and the large amount of noise in the initial 
map. 

5.4. 5-Carboxymethyl-2-hydroxymuconate isomerase 

The experimental data consists of native magni- 
tudes to 2.1 A resolution and phase information to 

3.7 A. One derivative provided weak phase informa- 
tion to 2.6 A. The initial MIR map was uninter- 
pretable. Phase extension was performed from 3.7 to 
2.1 A, although the phase information in the exten- 
sion region was also taken into account in the phase 
recombination. It can be seen from Table 3 that the 
effects of solvent flattening, histogram matching and 
Sayre's equation are similar to those found pre- 
viously. 

The application of the threefold non-crystallo- 
graphic symmetry on its own makes only a slight 
improvement in the map although, as before, there is 
no significant phase extension. However, the com- 
bination of non-crystallographic symmetry averag- 
ing, solvent flattening and histogram matching leads 
to a much greater improvement. This map is signifi- 
cantly better than the one from which the structure 
was initially determined and there is little doubt that 
much of it can be interpreted. 

Fig. 3 compares sections of the map calculated 
from MIR phases and S Q U A S H  phases. The con- 
tours are at intervals of 1.5 standard deviations for 
each map. Correct atomic positions are superim- 
posed for x < y  only. The MIR map shows few 
interpretable features and even isolating the protein 
from the solvent regions is difficult. In the density- 
modifed map, however, there is clear contrast 
between solvent and protein regions and these corre- 
spond closely with the actual molecular position. The 
density peaks also agree well with the correct atomic 
positions. 

5.4.1. Partial structure. The initial atomic model, 
containing 30% of the main chain with an estimated 
r.m.s, coordinate error of 0.8 A was available for this 
structure (Wigley et al., 1992). This provided a realis- 
tic test of the use of partial structure information in 
the density modification. The MIR phases and par- 
tial structure data were combined using Read's trA 
method to give a starting map. The statistics for this 
map, before and after the application of density 
modification, are shown in Table 3. 

The combined phases, calculated from the MIR 
and model phases, are considerably better than the 
MIR phases. Density modification, which includes 
the partial structure, gives a further improvement. 
Examination of the maps reveals that the partial 
structure affects the region of the cell local to the 
model and has little effect elsewhere. 

5.5. Penicillin acylase 

The initial data set consists of native magnitudes 
to 2.5A resolution and MIR phases to 3.5A 
although, owing to lack of isomorphism, the phase 
information beyond 5.0 A is very weak. 

The initial MIR map was uninterpretable. Histo- 
gram matching and solvent flattening were applied to 
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this map to extend the phases to the resolution limit 
of the native data. An improved map was generated 
from which it was possible to build a model of about 
30% of the main chain, mainly sections of a-helix 
and B-sheet. The map is now being further improved 
with the aid of density modification and the partial 
structure information. 

A three-dimensional density plot is shown in Fig. 4 
for a typical region of the map, before and after 
improvement. The superimposed model is a section 
of a-helix, but no side chains have been constructed 
at this stage. In Fig. 4(a), it can be seen that the 
density corresponding to the a-helix is broken and 
that the remaining density is sufficiently unclear that 

(a) 

(b) 
Fig. 4. (a) Part of the penicillin acylase MIR map. (b) The same 

part of the penicillin acylase HM/SF map. 

fitting a helix would be highly speculative. In Fig. 
4(b), the break in the density has been almost 
bridged and the remaining density is clearer. This is 
typical of the improvements which have transformed 
an uninterpretable map into one from which a struc- 
ture determination can at least be attempted. 

6. Discussion 

It has been shown that data from real and reciprocal 
space constraints on the electron density can be 
combined to form a practical algorithm for phase 
refinement. SQUASH represents a practical applica- 
tion of this method, incorporating Sayre's equation, 
solvent flattening, histogram matching, non-crystal- 
lographic symmetry and partial structure in a single 
procedure. The program has been applied without 
user intervention to a range of test structures and the 
results suggest that the simultaneous application of 
the various techniques is more effective than 
applying each of them separately. 

Sayre's equation was very effective for phase 
refinement and extension in most of the test cases. 
However, if the initial map is poor, Sayre's equation 
becomes ineffective in phase refinement. Under these 
circumstances, is is better to apply density modifi- 
cation alone until a less noisy map is obtained. 
Sayre's equation also decreases in power as the 
solvent content increases, since it is only applicable 
to the molecular regions of the map. This suggests 
that a solvent-removal algorithm may improve its 
performance. It works best when high-resolution 
data (better than 3 A) are available. It is also clear 
that the higher the resolution, the more accurate the 
phases of all reflections become. 

Solvent flattening is poor for phase extension, but 
is good for phase refinement. Histogram matching is 
much better for phase extension and the combination 
of the two techniques can be very effective. They can 
be applied successfully to most structures. 

Non-crystallographic symmetry averaging is useful 
for refining phases, but is very weak for phase exten- 
sion without taking special precautions. The com- 
bination of non-crystallographic symmetry averaging 
with histogram matching and solvent flattening, 
however, is a very powerful technique for both phase 
refinement and extension. 

Partial structure information as a density- 
modification technique is only a little better than its 
normal use in phase calculations. 

The large improvement in electron-density maps 
produced by the combination of histogram match- 
ing, solvent flattening and non-crystallographic sym- 
metry suggests that the strengths of the techniques 
are complementary. Each technique, when applied in 
isolation, will introduce systematic errors which are 
difficult to overcome when a different technique is 
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subsequently applied. This problem is greatly 
reduced when applying the techniques simultane- 
ously and the combined process iterates much 
further towards the desired density map. 

Work is continuing in the investigation of other 
techniques that can be incorporated into SQUASH 
and to try and improve the performance of Sayre's 
equation at low resolution. In particular, we wish to 
apply Sayre's equation only to the molecular region 
and to find an improved method for generating the 0 
function. 
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